

Dipartimento di Fisica Università degli Studi di Milano

Istituto di Fotonica e Nanotecnologie Consiglio Nazionale delle Ricerche

Spin qubits in silicon

Enrico Prati, PhD

INTEL

Full 300mm Wafer

Full Reticle

7 gate array

Mentorship per Prometeia – Copyright © Enrico Prati (CNR)

- Silicon chip spin qubits ٠
- 50M\$ investment •
- **Available Free Simulator**
- Development Spin Qubits -> array of 7

Quantum co-processor: augmenting, not replacing, traditional HPC systems

IFN

~50+ Qubits: Proof of concept

- Computational power exceeds supercomputers
- Learning test bed for quantum "system"

~1000+ Qubits: Small problems

- Limited error correction
- Chemistry, materials design
- Optimization

~1M+ Qubits: Commercial scale

- Fault tolerant operation
- Cryptography
- Machine Learning

Spin qubits

	Contents lists available at ScienceDirect		
5-5-6-0	Physics Letters A		
ELSEVIER	www.elsevier.com/locate/pla	international Banchest	

Is all-electrical silicon quantum computing feasible in the long term? Elena Ferraro^{a,*}, Enrico Prati^b

Table 3

Number of physical qubits per unit surface and area covered by 2 billions of physical qubits. The silicon hybrid qubit footprint refers to the 7 nm technology node.

	Semiconductor Single-Spin qubit	Semiconductor Hybrid qubit (Steane code)	Semiconductor Hybrid qubit (Surface code)	Superconductor Flux qubit (DWave like)	Superconductor Transmon qubit (IBM like)	Trapped Ion qubit
Mqb_{ph}/cm^2 $A_{chip}(mm^2)$	8000 25	830 240	100 × 10 ² 20	$\begin{array}{c} 8\times10^{-4}\\ 25\times10^{7}\end{array}$	10^{-5} 2 × 10 ¹⁰	2×10^{-5} 10^{10}
Reference	[75]	[5]	[5]	[79]	[80,81]	[82]

CRYOGENIC ELECTRONICS FOR QUANTUM COMPUTING

Intel Launches Horse Ridge Chip for Quantum Computing Systems

by Anton Shilov on December 10, 2019 2:15 PM EST

Posted in Quantum Computing Intel Servers Horse Ridge

Reproduction not permittedCopyright © Enrico Prati (CNR)

How to probe atomic scale nanoelectronics?

Basic device: a single electron transistor

Density of States (DoS)

Density of states and Fermi Energy

Condition to see discrete energy levels related effects:

- energy level spacing
 - linewidth

Chemical potential: (of a thermodynamic system) is the amount by which the energy of the system would change if an additional particle were introduced, with the entropy and volume held fixed. **Fermi Energy:** chemical potential at *T*=0

Confinement

Semiconductor nanostructures and quantum dots are fabricated by

- Vertical confinement (d=3->2) via 1)
 - Semiconductor/insulator interface (Si/SiO2)
 - Semiconductor/Semiconductor heterostructures (GaAs/AlGaAs or Si/SiGe)

2) Lateral confinement (d=2->1,0)

DOD

Drain

- Split gate technique
- Lithographically defined structures
- Atomic inclusions
- Point defects

www.elsevier.com/locate/me

Nature, 2007

Published online: 30 September 2007; doi:10.1038/nnano.2007.302

Available online 17 April 2004

SCIENCE ()DIRECT®

Tunneling through a single barrier

Tunneling in a quantum dot

Quantum dots: sequential tunneling through 2 barriers

Si nanoFETs tunneling

Charging energy

Charge stability diagram of a quantum dot

Typical units of conductance Quantum of conductance: $2e^2/h$ and equals 77.48 microsiemens, (12.9 $k\Omega$)

Quantum dots with a single ion implanted

The quantum of conductance

$$G = \frac{1}{R} = \frac{I}{V}$$

$$G = \frac{\sigma \; A}{\ell}$$

Classical definition

Current of +k states given by linear density of electrons:

$$f = (e/L) \sum v f + (E) =$$

$$= (e/L) \sum (dE/dk) f + (E) / \hbar$$
Quantum

*f*ormalism *f*+ Fermi distribution for +k states Which becomes in the continuum, with 2 spin states:

- = $(2e/h) \int dE f + (E) \theta (E \mathcal{E} \text{ cutoff})$
- = $(2e^2/h) M \Delta \mu / e$ (M is the number of modes)

G= [($2e^2/h$) M] ⁻¹ = 12.9 k Ω / M

 $(2e^2/h)$ is the quantum of conductance

Circuital view of the quantum dot and current

Spectroscopy: single As atom in FinFET

IFN

Moving an electron from a quantum dot to a donor

Enrico Prati – UNIMI

Single charge state sensing

IFN

Spin state sensing: spin-to-charge conversion

A.Morello et al., Nature 2010

Singlet-triplet qubit

IFN

Enrico Prati – UNIMI

Hubbard (impurity) bands formation with 4 atoms

E. Prati, M. Hori, F. Guagliardo, G. Ferrari, T. Shinada, Nature Nanotech. (2012)

Coherent transport by adiabatic passage

IFN

Coherent transport by adiabatic passage

$$|\mathcal{D}_{+}\rangle = \sin \Theta_{1} \sin \Theta_{2}|1\rangle + \cos \Theta_{2}|2\rangle + \cos \Theta_{1} \sin \Theta_{2}|3\rangle$$

 $|D_{-}\rangle = \sin \Theta_1 \cos \Theta_2 |1\rangle - \sin \Theta_2 |2\rangle + \cos \Theta_1 \cos \Theta_2 |3\rangle$

 $|\mathcal{D}_0\rangle = \cos \Theta_1 |1\rangle + 0 |2\rangle - \sin \Theta_1 |3\rangle,$

IFN

In order to proceed, we numerically solve the master equations for the density matrix, ρ ,

$$\dot{\rho} = -\frac{i}{\hbar}[\mathcal{H}, \rho] + \Gamma[\rho - \text{diag}(\rho)],$$
 (8)

where Γ is the T₂ (pure dephasing) rate, assumed to act equally on all coherences. As we are primarily considering

Enrico Prati – UNIMI

Coherent transport by adiabatic passage

Atomistic simulations of adiabatic coherent electron transport in triple donor systems

Rajib Rahman,^{1,*} Seung H. Park,¹ Jared H. Cole,^{2,3} Andrew D. Greentree,³ Richard P. Muller,⁴ Gerhard Klimeck,^{1,5} and Lloyd C. L. Hollenberg^{3,†}

Suggested articles

PHYSICAL REVIEW B

VOLUME 44, NUMBER 4

15 JULY 1991-II

Theoretical aspects of Coulomb blockade

Theory of Coulomb-blockade oscillations in the conductance of a quantum dot

C. W. J. Beenakker Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands (Received 28 November 1990)

Rep. Prog. Phys. 64 (2001) 701-736

INSTITUTE OF PHYSICS PUBLISHING

www.iop.org/Journals/rp PII: S0034-4885(01)60525-6

REPORTS ON PROGRESS IN PHYSICS

nature

nanotechnolog

Experimental aspects of Coulomb blockade

L P Kouwenhoven¹, D G Austing² and S Tarucha^{2,3}

Experimental aspects of single atom transistors

A single-atom transistor

Martin Fuechsle¹, Jill A. Miwa¹, Suddhasatta Mahapatra¹, Hoon Ryu², Sunhee Lee³, Oliver Warschkow⁴, Lloyd C. L. Hollenberg⁵, Gerhard Klimeck³ and Michelle Y. Simmons^{1*}

Silicon gubits

De Michielis et al. J of Phys D 2023 (review in press)

Few-electron quantum dots

FTTFRS PUBLISHED ONLINE: 19 FEBRUARY 2012 | DOI: 10.1038/NNANO.2012.21

Questions

Enrico Prati <u>enrico.prati unimi.it</u>

(EGEA, 2017) Artificial intelligence Quantum computers

